
www.elsevier.com/locate/asr

Advances in Space Research 36 (2005) 1143–1150
Hamilton–Jacobi modelling of stellar dynamics

Pini Gurfil a,*, N. Jeremy Kasdin b, Egemen Kolemen b

a Faculty of Aerospace Engineering, Technion – Israel Institute of Technology, Haifa 32000, Israel
b Mechanical and Aerospace Engineering Department, Princeton University, Princeton, NJ 08544, USA

Received 20 February 2005; received in revised form 14 June 2005; accepted 14 June 2005
Abstract

One of the physical settings emerging in the galaxy and stellar dynamics is motion of a single star and a stellar cluster about a
galaxy center. The potential availability of analytical treatment of this problem stems from the smallness of mass of the star and
cluster relative to the galactic mass, giving rise to Hill�s restricted three-body problem in the galaxy–cluster–star context. Based
on this observation, this paper presents a Hamiltonian approach to modelling stellar motion by the derivation of canonical coor-
dinates for the dynamics of a star relative to a star cluster. First, the Hamiltonian is partitioned into a linear term and a high-order
term. The Hamilton–Jacobi equations are solved for the linear part by separation, and new constants for the relative motions are
obtained, called epicyclic orbital elements. The effect of an arbitrary cluster potential is incorporated into the analysis by a variation
of parameters procedure. A numerical optimization technique is developed based on the new orbital elements, and quasiperiodic
stellar orbits are found.
� 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In the late 19th century, the American mathematician
G.W. Hill developed a simple and elegant model for the
motion of the Moon around the Earth with the pertur-
bations exerted by the Sun (Hill, 1878). Indeed, to most
celestial mechanicians and dynamical astronomers,
‘‘Hill�s Problem’’ means a model for planetary motion
in which two nearby bodies orbit a much more massive
body in quasi-circular orbits. In the current text, how-
ever, we use Hill�s model to analyze a problem in stellar
dynamics.

Consider a star in a star cluster which orbits about a
galaxy. The star, cluster and galaxy replace the Moon,
Earth, and Sun, respectively, in the classical setting.
Although the potentials of the cluster and galaxy are
not those of point masses, Hill�s problem is a good start-
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ing point, which can be easily manipulated via varia-
tional techniques to include more complicated effects.

Hill�s formulation of the restricted three-body prob-
lem (1878) constitutes a ubiquitous approximation for
the motion of mutually gravitating bodies about a mas-
sive primary. Hill�s equations have been used in a variety
of celestial mechanics problems and applications (Hénon
and Petit, 1986; Namouni, 1999; Villac and Scheeres,
2003; Scheeres et al., 2003). Hénon and Petit (1986)
showed that Hill�s problem is characterized by the same
generality as that of the restricted three-body problem, in
the sense that the mass ratio of the orbiting objects can
be arbitrary, although still the mass of each body should
be very small compared to the massive primary.

Recently, a few works suggested to utilize Hill�s equa-
tions for modelling the dynamics of a star relative to a
star cluster orbiting the galactic center (Heggie, 2000;
Fukushige and Heggie, 2000; Ross et al., 1997). Hill�s
formulation is flexible enough to accommodate exten-
sions to the basic setup, allowing the incorporation of,
ved.
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among others, an arbitrary cluster potential and a spher-
ically symmetric galaxy (Binney and Tremaine, 1987).

This paper is aimed at developing canonical orbital
elements for modelling the relative stellar motion prob-
lem using Hill�s equations. In other words, we attempt to
find Delaunay-like canonical elements for the relative
stellar dynamics.

In order to solve the problem, we first write the
Lagrangian for the relative motion, and then perform
a Legendre transformation to find the Hamiltonian.
We solve the Hamilton–Jacobi equations and treat the
gravitational interaction between the star cluster and
the star as a perturbation. The new orbital elements,
which we termed epicyclic orbital elements, are constants
of the relative motion, similarly to the elements intro-
duced by Gurfil and Kasdin (2003) for modelling the
planetary Hill problem. Due to the fact that the epicyclic
orbital elements are canonical, any given external poten-
tial can be modelled using Hamilton�s equation. This
methodology offers a simple and general framework
for modelling stellar motion.
2. Equations of motion

The most convenient coordinate system for our prob-
lem is the one in which the Hamilton–Jacobi equation
most easily separates. Cartesian coordinates turn out
to be most convenient. Most of the work in this paper
will be confined to a rotating Cartesian Euler–Hill sys-
tem as shown in Fig. 1. This coordinate system, denoted
by R, is defined by the unit vectors x̂; ŷ; ẑ. The origin of
this coordinate system is set on a circular reference orbit
of a star cluster about the galactic center, having radius
R. The cluster is rotating about the center with mean

motion n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM g=R3

q
, where Mg is the galaxy mass.

The reference orbit plane is the fundamental plane, the
positive x̂-axis points radially outward, the ŷ-axis is ro-
tated 90� in the direction of motion and lies in the fun-
damental plane, and the ẑ-axis completes the setup to
yield a Cartesian dextral system.

Using Hill�s frame, the equations of motion for a
massless star, a spherically symmetric galaxy potential
and an arbitrary cluster potential W, the three-dimen-
Fig. 1. The Euler–Hill reference frame for modelling relative stellar
motion.
sional Hill equations modelling the dynamics of a star
relative to the cluster are given by (Binney and Tre-
maine, 1987):

€x� 2n _y þ ðj2 � 4n2Þx ¼ � oW
ox

; ð1Þ

€y þ 2n _x ¼ � oW
oy

; ð2Þ

€zþ n2z ¼ � oW
oz

; ð3Þ

where j is termed the epicyclic frequency1 (Binney and
Tremaine, 1987). For a point-mass galaxy, W = �GMc/r,
j = n and the classicalHill equations are recovered.Based
on Eqs. (1)–(3), we can define the unperturbed relative
motion Lagrangian

Lð0Þ
r ¼ 1

2
ð _x2 þ _y2 þ _z2Þ þ nðx _y � y _xþ R _yÞ þ 3

2
n2R2

� j2 � 4n2

2
x2 � n2

2
z2 �W; ð4Þ

and proceed with the analysis using this Lagrangian.
Incorporation of perturbations due to mutual gravita-
tion will be included in a perturbing Hamiltonian fol-
lowing a procedure discussed in the next section.
3. The Hamilton–Jacobi solution

In this section, we shall divide the three-degree-of-
freedom Hamiltonian of the relative motion into a
nominal part and a perturbed part, and then solve
the Hamilton–Jacobi equation for the unperturbed,
linear system. This solution will provide us with new
canonical coordinates and momenta that are constants
of the (relative) motion. The perturbation, or variation
of parameters equations will then show how these con-
stants vary under the perturbation of mutual gravita-
tion or other perturbations modelled by a perturbing
Hamiltonian Hð1Þ.

We therefore aim at casting the Hamiltonian of the
relative motion in the form

Hr ¼ Hð0Þ
r þHð1Þ

r

and then solve the Hamilton–Jacobi equation for the
linear system, represented by the Hamiltonian Hð0Þ

r ,
without the interaction potential. This solution will yield
constant canonical coordinates and momenta. The per-
turbation equations will then show how these constants
vary under the gravitational interaction between the star
and the cluster.
1 The epicyclic frequency describes the timescale for typical non-
circular perturbations to oscillate, or grow, in the radial direction of a
disc. If we describe the rotation frequency of a star on a nearly circular
orbit as X = vc/R, and its radial frequency as the epicyclic frequency j,
then the orbit closes back on itself if X/j is rational.
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Finding the Hamiltonian for the system is straightfor-
ward. The canonical momenta are found from the usual
definition:

px ¼
oLð0Þ

r

o _x
¼ _x� ny;

py ¼
oLð0Þ

r

o _y
¼ _y þ nðxþ RÞ;

pz ¼
oLð0Þ

r

o_z
¼ _z

ð5Þ

and then, using the Legendre transformation,

Hð0Þ
r ¼ xpx þ ypy þ zpz �Lð0Þ

r ; ð6Þ

the unperturbed Hamiltonian for relative motion in
Cartesian coordinates is found:

Hð0Þ
r ¼ 1

2
ðpx þ nyÞ2 þ 1

2
½py � nðxþ RÞ�2 þ 1

2
p2z

� 3n2R2

2
þ j2 � 4n2

2
x2 þ n2

2
z2. ð7Þ

This Hamiltonian is used to solve the Hamilton–Jacobi
equation (Goldstein, 1980). A general explanation of the
Hamilton–Jacobi equation is given in Appendix A. Be-
cause the Hamiltonian is a constant, Hamilton�s princi-
pal function easily separates into a time-dependent part
summed with Hamilton�s characteristic function,

Sðx; y; z; tÞ ¼ W ðx; y; zÞ � a01t;

where a01 is the constant value of the unperturbed Ham-
iltonian, Hð0Þ

r . After carrying out a few algebraic manip-
ulations, elaborated in Appendix B, it can be shown that
the final generating function, emanating from the solu-
tion of the low-order HJ equation, can be written as:

Sðx; y; z; a1; a2; a3; tÞ ¼ W ðx; y; zÞ � ða1 þ a2Þt; ð8Þ
where

W ðx; y; zÞ ¼ �nxy þ 1

n
sin�1 nzffiffiffiffiffiffiffi

2a2
p

� �
a2

þ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2z2 þ 2a2

p

2
þ yðnRþ a3Þ

þ 1

2j3
ðxj2 � 2na3Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2j2 þ 2a1 þ 4nxa3 � a23

q

þ 1

2j3
sin�1 �ðxj2Þ þ 2na3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j2a1 þ ð4n2 � j2Þa23
p

" #

� ½�2j2a1 þ ð�4n2 þ j2Þa23�. ð9Þ
Note that we have omitted the constant 3n2R2/2 as it
does not affect the solution. It is straightforward to
express the new canonical momenta (a1,a2,a3) in terms
of the original Cartesian positions and velocities (and
thus in terms of the initial conditions). For instance,
a3 is given by Eq. (75) using Eq. (5). Eq. (71) is used
to find a2, substituting pz from Eq. (5) for dW3/dz.
Finally, a1 ¼ a01 � a2 þ 3n2R2=2 is simply the value of
the Hamiltonian and is thus given by Eq. (7) with the
momenta substituted from Eq. (5). The result is:

a1 ¼
1

2
_x2 þ 1

2
_y2 þ j2 � 4n2

2
x2; ð10Þ

a2 ¼
1

2
_z2 þ 1

2
n2z2; ð11Þ

a3 ¼ _y þ 2nx. ð12Þ

The canonical coordinates (Q1,Q2,Q3) and the corre-
sponding phase variables (b1,b2,b3) are found via
the partial derivatives of the generating functions in
Eq. (8) with respect to each of the new canonical
momenta,

Qi ¼
o½Sðx; y; z; a1; a2; a3; tÞ þ a01t�

oai

¼ o½W ðx; y; z; a1; a2; a3Þ�
oai

ð13Þ

yielding

Q1 ¼ t þ b1 ¼
1

j
tan�1 j2x� 2n _y � 4n2x

j _x

� �
; ð14Þ

Q2 ¼ t þ b2 ¼
1

n
tan�1 nz

_z

� �
; ð15Þ

Q3 ¼ b3 ¼
ð�j2 _y þ 4 _yn2 � 2nj2xþ 8n3xÞ

j3

� tan�1 �j2xþ 2n _y þ 4n2x
j _x

� �
� 2n _xj� yj3

j3
. ð16Þ

Solving Eqs. (10)–(16) for x, y, and z yields the generat-
ing solution for the Cartesian relative position compo-
nents in terms of the new constants of the motion, the
canonical momenta (a1,a2,a3) and the canonical coordi-
nates (Q1,Q2,Q3):

xðtÞ ¼ 2na3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2a1 � ðj2 � 4n2Þa23

q
sinðjQ1Þ; ð17Þ

yðtÞ ¼ j3Q3 þ a3jðj2 � 4n2ÞQ1

þ 2n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2a1 þ ðj2 � 4n2Þa23

q
cosðjQ1Þ; ð18Þ

zðtÞ ¼ 1

n

ffiffiffiffiffiffiffi
2a2

p
sinðnQ2Þ. ð19Þ

From Eqs. (10)–(16) (or, alternatively, by differentiating
Eqs. (17)–(19) with respect to time) we can also obtain
the expressions for the Cartesian relative velocity com-
ponents in terms of a1, a2, a3 and Q1, Q2, Q3:

_xðtÞ ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2a1 � ðj2 � 4n2Þa23

q
cosðjQ1Þ; ð20Þ

_yðtÞ ¼ a3jðj2 � 4n2Þ

� 2nj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j2a1 þ ðj2 � 4n2Þa23

q
sinðjQ1Þ; ð21Þ

_zðtÞ ¼
ffiffiffiffiffiffiffi
2a2

p
cosðnQ2Þ. ð22Þ

We call the new constants of the motion
N = [a1,a2,a3,b1,b2,b3] epicyclic orbital elements for
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the relative stellar motion. They are defined on the man-
ifold O� S3, where O ¼ R� RP0 � R � R3.

While these canonical variables can be used in the fi-
nal equations of motion, one more modification dramat-
ically simplifies the final result. We define a new
momentum variable,

a01 ¼
1

2
�1þ 4n2

j2

� �
a23 þ a1

and solve for the new low-order Hamiltonian

H ð0Þ ¼ a2 þ
1

2
1� 4n2

j2

� �
a23 þ a01 ð23Þ

and the new generating function

W new ¼ �nxy þ 1

n
sin�1 nzffiffiffiffiffiffiffi

2a2
p

� �
a2 þ

z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2z2 þ 2a

p

2

þ yðnRþ a3Þ þ
1

2j2
ðxj2 � 2na3Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ðx2j2Þ þ 2a01 þ 4nxa3 � a23

q

þ 1

2j3
sin�1 �xj2 þ 2na3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j2a01 þ ð4n2 � j2Þa23
p

" #

� ½�2j2a01 þ ð�4n2 þ j2Þa23�. ð24Þ
By modifying the generating function accordingly, we
obtain equations for the new canonical momenta and
coordinates in terms of the Cartesian variables:

a01 ¼
x2ð�4n2 þ j2Þ

2
þ _x2

2
þ _y2

2
þ 1

2
�1þ 4n2

j2

� �
ð2nxþ _yÞ2;

ð25Þ

a02 ¼
1

2
_z2 þ 1

2
n2z2; ð26Þ

a03 ¼ _y þ 2nx; ð27Þ

Q0
1 ¼ t þ b1 ¼

1

j
tan�1 xð�4n2 þ j2Þ � 2n _y

j _x

� �
; ð28Þ

Q0
2 ¼ t þ b2 ¼

1

n
tan�1 nz

_z

� �
; ð29Þ

Q0
3 ¼ t 1� 4n2

j2

� �
a3 þ b3 ¼ y � 2n _x

j2
. ð30Þ

From this point onward in the paper, these new canon-
ical elements will be used and the primes will be dropped
for convenience.

Solving Eqs. (25)–(30) for x, y, and z yields the gen-
erating solution for the Cartesian relative position com-
ponents in terms of the new constants of the motion:

xðtÞ ¼ 2na3 þ
ffiffiffi
2

p
j sinðjQ1Þ

ffiffiffiffiffi
a1

p

j2
; ð31Þ

yðtÞ ¼ Q3 þ
2

ffiffiffi
2

p
n cosðjQ1Þ

ffiffiffiffiffi
a1

p

j2
; ð32Þ

zðtÞ ¼
ffiffiffi
2

p
sinðnQ2Þ

ffiffiffiffiffi
a2

p

n
. ð33Þ
Thus, as is well known from solutions of Hill�s unper-
turbed equations, the motion consists of a periodic
out-of-plane oscillation parameterized by a2, Q2, a peri-
odic in-plane motion described by a1, Q1, and the center
of the x–y ellipse is parameterized by a3 and Q3. The y-
invariance is given by the shift Q3. Non-constant values
of a3 and Q3 represent the secular drift of an orbit, i.e.,
an escaping star (Heggie, 2000). From Eqs. (25)–(30)
(or, alternatively, by differentiating Eqs. (31)–(33) with
respect to time) we can also obtain the expressions for
the Cartesian relative velocity components in terms of
(a1,a2,a3) and (Q1,Q2,Q3):

_xðtÞ ¼
ffiffiffi
2

p
cosðjQ1Þ

ffiffiffiffiffi
a1

p
; ð34Þ

_yðtÞ ¼ 1� 4n2

j2

� �
a3 �

2
ffiffiffi
2

p
n sinðjQ1Þ

ffiffiffiffiffi
a1

p

j
; ð35Þ

_zðtÞ ¼
ffiffiffi
2

p
cosðnQ2Þ

ffiffiffiffiffi
a2

p
. ð36Þ

Finally, it is often convenient to have expressions for the
original canonical momenta in terms of the new elements.
These are found from the transformation equations:

px ¼
�ðnj2Q3Þ þ

ffiffiffi
2

p
ð�2n2 þ j2Þ cosðjQ1Þ

ffiffiffiffiffi
a1

p

j2
; ð37Þ

py ¼ nRþ 1� 2n2

j2

� �
a3 �

ffiffiffi
2

p
n sinðjQ1Þ

ffiffiffiffiffi
a1

p

j
; ð38Þ

pz ¼
ffiffiffi
2

p
cosðnQ2Þ

ffiffiffiffiffi
a2

p
. ð39Þ
4. Modified epicyclic elements

The epicyclic elements described above provide a con-
venient parametrization of a first-order relative motion
orbit in terms of amplitude and phase. However, the var-
iational equations for these elements, accounting for the
gravitational interaction, can become quite complicated
and numerically sensitive. This is a concern when some
of the amplitudes approach zero, resulting in phase terms
which are ill-defined. For these situations it is convenient
to introduce an alternative set of constants in terms of
amplitude variables only. We call these modified epicyclic

orbital elements, N 0 = [a1,a2,a3,b1,b2,b3], and define
them via the contact transformation:

a1 ¼
ffiffiffi
2

p
sinðjb1Þ

ffiffiffiffiffi
a1

pffiffiffi
j

p ; ð40Þ

b1 ¼
ffiffiffi
2

p
cosðjb1Þ

ffiffiffiffiffi
a1

pffiffiffi
j

p ; ð41Þ

a2 ¼
ffiffiffi
2

p
cosðnb2Þ

ffiffiffiffiffi
a2

pffiffiffi
n

p ; ð42Þ

b2 ¼
ffiffiffi
2

p
sinðnb2Þ

ffiffiffiffiffi
a2

pffiffiffi
n

p ; ð43Þ

a3 ¼ a3; ð44Þ
b3 ¼ Q3. ð45Þ
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It can be easily shown that the transformation in Eqs.
(40)–(45) is symplectic. That is, letting M = oN 0/oN, it
is straightforward to show that:

MJMT ¼ J ; ð46Þ
where J is the orthoskew matrix [0, I;�I, 0]. Thus, the
new elements are also canonical and satisfy Hamilton�s
equations. In some cases, the variational equations for
these elements will be much easier to work with. In
terms of the new canonical momenta (a1,a2,a3) and
new canonical coordinates (b1,b2,b3), the generating
solution becomes:

xðtÞ ¼ cosðtjÞa1ffiffiffi
j

p þ 2na3
j2

þ sinðtjÞb1ffiffiffi
j

p ; ð47Þ

yðtÞ ¼ �2n sinðtjÞa1
j

3
2

þ 2n cosðtjÞb1
j

3
2

þ b3; ð48Þ

zðtÞ ¼ cosðntÞa2ffiffiffi
n

p þ sinðntÞb2ffiffiffi
n

p ð49Þ

for the new Hamiltonian:

H ð0Þ ¼ 1

2
1� 4n2

j2

� �
a23. ð50Þ

Variation of the parameters N or N 0 due to perturbations
such as a gravitational interaction can be obtained via
Hamilton�s equations on a perturbing Hamiltonian,
and the resulting time varying parameters N(t) or N 0(t)
can then be substituted into the generating solutions to
yield the exact relative motion description in the config-
uration space R3. This is the subject of the next section.
5. Gravitational interaction analysis via variation of

parameters

The primary value of the canonical approach is the
ease with which equations for the variations of parame-
ters can be found. For example, the variations of the epi-
cyclic orbital elements are given by Hamilton�s
equations on the perturbation Hamiltonian, Hð1Þ

r :

_bi ¼
oHð1Þ

r

oai
¼ oHð1Þ

r

ox
ox
oai

þ oHð1Þ
r

oy
oy
oai

þ oHð1Þ
r

oz
oz
oai

; ð51Þ

_ai ¼ � oHð1Þ
r

obi
¼ � oHð1Þ

r

ox
ox
obi

þ oHð1Þ
r

oy
oy
obi

þ oHð1Þ
r

oz
oz
obi

� �
.

ð52Þ

These can be used to find the effect on the elements of
any number of perturbations which are derived from a
conservative potential, such as the gravitational interac-
tion between the star and the cluster. Moreover, the
developed framework supports general models for the
cluster potential, such as King�s model (King, 1962).
For a point-mass galaxy (setting Hð1Þ

r ¼ W ¼ �GM c=r
and utilizing the normalization j = n = 1), Eqs. (51)
and (52) yield
_a1 ¼
�2nyl cosðtjÞ

r3j
3
2

� xl sinðtjÞ
r3

ffiffiffi
j

p ; ð53Þ

_b1 ¼
xl cosðtjÞ

r3
ffiffiffi
j

p � 2nyl sinðtjÞ
r3j

3
2

; ð54Þ

_a2 ¼ � zl sinðntÞffiffiffi
n

p
r3

� �
; ð55Þ

_b2 ¼
zl cosðntÞffiffiffi

n
p

r3
; ð56Þ

_a3 ¼ � yl
r3

; ð57Þ

_b3 ¼ a3 1� 4n2

j2

� �
þ 2nxl

r3j2
; ð58Þ

where x = x(N 0, t), y = y(N 0, t), z = z(N 0, t), r = r(N 0, t)
are functions of the modified epicyclic elements. Eqs.
(53)–(58) constitute canonical Hill equations. They can
be re-written in the state-space form

R : _N
0ðtÞ ¼ F ðN0; tÞ. ð59Þ

These equations can be studied analytically or numeri-
cally in order to detect periodic and quasiperiodic orbits
for the relative stellar dynamics. This is the subject of
the next section.
6. Numerical search for bounded relative orbits

We illustrate the use of the newly defined orbital ele-
ments by implementing a numerical search procedure
(Gurfil and Kasdin, 2003) aimed at detecting bounded
planar solutions for the dynamical system R. To this
end, we express the modified epicyclic elements using
Fourier series expansions of the form

a1ðtÞ ¼ a0 þ
X1
k¼1

ask sinðktÞ þ ack cosðktÞ; ð60Þ

a3ðtÞ ¼ b0 þ
X1
k¼1

bsk sinðktÞ þ bck cosðktÞ; ð61Þ

b1ðtÞ ¼ c0 þ
X1
k¼1

csk sinðktÞ þ cck cosðktÞ; ð62Þ

b3ðtÞ ¼ d0 þ
X1
k¼1

ds
k sinðktÞ þ dc

k cosðktÞ ð63Þ

and perform a numerical search using a gradient-based
parameter optimization routine, comprising the follow-
ing steps. First, we substitute Eq. (60), truncated at some
given l, into Eqs. (53)–(58). The unknown parameters are:

a ¼ fa0; as1; . . . asl; ac1; . . . acl ; b0; bs1; . . . bsl; bc1; . . . bcl ;
c0; cs1; . . . c

s
l; b

c
1; . . . c

c
ld0; d

s
1; . . . d

s
l; d

c
1; . . . d

c
lg. ð64Þ

Next, we find the optimal Fourier series coefficients by
performing the unconstrained least-squaresminimization

a� ¼ argmin
a

Z tf

0

k _N0ða; tÞ � F ð½N0ða; tÞ�Þk2 dt. ð65Þ
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After the optimization routine converges to a (possibly
local) minimum, we calculate the initial conditions from:

a1ð0Þ ¼ a0 þ
Xl

k¼1

ack; ð66Þ

a3ð0Þ ¼ b0 þ
Xl

k¼1

bck; ð67Þ

b1ð0Þ ¼ c0 þ
Xl

k¼1

cck; ð68Þ

b3ð0Þ ¼ d0 þ
Xl

k¼0

dc
k ð69Þ

and use them to integrate the differential equations (59).
If the minimum found is larger than zero, there will be
differences between the time histories of the epicyclic
elements as obtained from the simulation, and Eq.
(60)–(63). However, after running a sufficient number
of random initial guesses, there is a large ensemble of
50 0 50
50

0

50

x/ε

y/
ε

a

0.01 0 0.01
3

2

1

0

1

2

3

a3/ε

b 3/ε

20 0 20
40

20

0

20

40

x/ε

y/
ε

0.2 0 0.2
15

10

5

0

5

10

15

a3 /ε

b 3/ε

cb

Fig. 2. Quasiperiodic star orbits in the x–y plane (top plots) an

Table 1
Initial conditions of modified epicyclic elements

Element Orbit a Orbit b

a1 9.878828344993e � 3 �1.685487979534e �
a3 2.170959044953e � 6 �6.917608836309e �
b1 3.084348228288e � 2 1.944695949659e �
b3 �2.829622548335e � 3 �1.780556876619e �
solutions yielding a minimum which is sufficiently close
to zero, implying that the integrated solutions and the
static solutions match.

We emphasize that the optimization procedure de-
scribed above is static. That is, the differential equations
(53)–(58) are transformed into algebraic equations using
the pre-defined, periodic, topology of the (candidate)
solutions given by Eqs. (60)–(63).

To illustrate the results obtained using the described
methodology, we chose randomly selected initial guesses
for a*. A number of retrograde quasiperiodic orbits
were found. Fig. 2 depicts some of these orbits. The
top plots in this figure describe the orbits in the x–y
plane, i.e., the configuration space, and the bottom plots
describe the orbits in terms of the guiding center, defined
by (2a3,b3). All the axes are normalized by Hill�s param-
eter, � = (l/3)1/3. The motion is coorbital if the guiding
center is contained within the annulus ±�. In this case,
the dynamics are determined by the 1:1 mean motion
commensurability.
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d their guiding centers in the b3–a3 plane (bottom plots).

Orbit c Orbit d

2 �1.310080444760e � 3 1.942441419644e � 3
6 5.247175473481e � 4 �7.997868241214e � 4
4 3.102346029393e � 3 2.234208495246e � 3
2 �4.910831767320e � 3 �4.130667313510e � 3
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Orbit (a) represents motion with small magnitude of
the guiding center (meaning small variation of the nor-
malized coordinate a3/�), orbit (b) represents motion
with medium magnitude, and orbits (c) and (d) represent
motion with large magnitude of the guiding center,
which is still contained within the annulus of the
Lagrangian equilibrium points. Equivalent results where
obtained by Namouni (1999) for the celestial dynamics
case using classical orbital elements. The initial condi-
tions used to integrate the equations of motion (59)
are given in Table 1. We emphasize that by selecting
suitable initial conditions, the center of mass of the
star–cluster system will follow the reference unit circle.
The analysis of the relative motion is then carried out
relative to the known motion of the center of mass.
7. Conclusions

This paper developed a Hamiltonian framework for
the analysis of stellar motion in terms of canonical rela-
tive motion elements termed ‘‘epicyclic’’ orbital ele-
ments. The epicyclic elements are constants of the
motion.

The underlying model was a Hill-like three-body
problem model, which also contained an epicyclic fre-
quency. This approach permits a convenient analysis
of the gravitational interaction between the star and
the star cluster via a variation-of-parameters procedure.
The resulting canonical elements were transformed into
new orbital elements, termed ‘‘modified’’ epicyclic ele-
ments, via a contact transformation, yielding a compact
form of the variational equations.

This unique approach renders an important analyti-
cal insight into the relative stellar motion problem,
and is very useful for numerical probing of the state-
space dynamics. Some characteristic orbits were found
using a numerical optimization routine, which was ap-
plied on the newly found orbital elements.

There are many extensions to this approach. We are
currently working on developing a solution for motion
about elliptical orbits and the incorporation of King�s
model for the interaction potential.
Appendix A. The Hamilton–Jacobi equation

The Hamilton–Jacobi equation is a methodology for
solving integrable dynamics problems via canonical
transformations. We briefly describe the derivation here
utilizing Goldstein (1980). Given a set of generalized
coordinates ðq; _qÞ and a Lagrangian L, the canonical
momenta are found via:

pi ¼
oL

oqi
.

The Hamiltonian is then given by the Legendre
transformation:

Hðq; p; tÞ ¼ _qipi �Lðq; _q; tÞ.
The n second order equations of motion for the problem
can then be alternatively written as 2n first order equa-
tions for _q and _p (Hamilton�s equations):

_qi ¼
oH

opi
;

_pi ¼ � oH

oqi
.

These canonical coordinates are not unique. If we con-
sider a transformation of the phase space to a new set
of coordinates Qi(q,p, t) and Pi(q,p, t), we can ask for
the class of transformations for which the new coordi-
nates also satisfy Hamilton�s equations on the new
Hamiltonian KðQ; P ; tÞ. Such a transformation is called
canonical. A common approach to the transformation is
via generating functions. For some function F2(q,P, t), a
transformation is canonical provided that:

pi ¼
oF 2

oqi
;

Qi ¼
oF 2

oP i
;

K ¼ Hþ oF 2

ot
.

The Hamilton–Jacobi problem comes from asking for
the special canonical transformations for which K � 0
and thus the new canonical coordinates are constants
of the motion. If such a transformation can be found,
the equations of motion have been solved. The generat-
ing function for such a transformation is called Hamil-
ton�s principle function, S(q,a, t), where ai is the new
constant canonical momentum, Pi. This generating
function can be found by setting the expression for K
equal to zero while substituting from the transformation
equations:

H q1; . . . ; qn;
oS
oq1

; . . . ;
oS
oqn

; t
� �

þ oS
ot

¼ 0

This is known as the Hamilton–Jacobi equation for S.
Note that in the special case where H is independent
of time it is a constant of the motion and can be set
equal to a1. In this case, the HJ equation separates
and we write Hamilton�s principle function in terms of
W(qi,ai), called Hamilton�s characteristic function, and
time:

Sðq1; . . . ; qn; a1; . . . ; an; tÞ ¼ W ðq1; . . . ; qn; a1; . . . ; anÞ � a1t

The Hamilton–Jacobi equation for W then reduces to:

H q1; . . . ; qn;
oW
oq1

; . . . ;
oW
oqn

� �
¼ a1.
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Appendix B. Solution of the Hamilton–Jacobi equation

The Hamilton–Jacobi equation reduces to a partial
differential equation in W(x,y,z):

a01 ¼
1

2

oW
ox

þ ny
� �2

þ 1

2

oW
oy

� nðxþ RÞ
� �2

þ 1

2

oW
oz

� �2

� 3n2R2

2
þ j2 � 4n2

2
x2 þ n2

2
z2. ð70Þ

Not unexpectedly, the z-coordinate immediately sepa-
rates. Writing the characteristic function as W(x,y,z) =
W 0(x,y) + W3(z), the HJ equation separates into:

a2 ¼
1

2

dW 3

dz

� �2

þ n2

2
z2; ð71Þ

a01 þ
3n2R2

2
� a2 ¼

1

2

oW 0

ox
þ ny

� �2

þ 1

2

oW 0

oy
� nðxþ RÞ

� �2

þ j2 � 4n2

2
x2. ð72Þ

Eq. (71) is just the HJ equation for simple harmonic mo-
tion. It is easily solved via quadrature:

W 3ðzÞ ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a2 � n2z2
p

dz

¼ 1

2
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a2 � n2z2

p
þ 2a2

n
sin�1 nzffiffiffiffiffiffiffi

2a2
p

� �� �
. ð73Þ

The solution of Eq. (72) is more subtle. We separate by
using the well-known constant of integration of Hill�s
equations, stemming from the integral of Eq. (2) with
W = 0:Z

€y þ 2n _x ¼ const. ð74Þ

Setting a3 equal to the constant of Eq. (74) and putting it
in terms of the canonical momentum, the third integra-
tion constant of the HJ equation becomes:

a3 ¼ py þ nðx� RÞ. ð75Þ
Using the fact that py = oW 0/oy, the remaining HJ equa-
tion (Eq. (72)) separates if we let

W 0ðx; yÞ ¼ W 1ðxÞ þ W 2ðyÞ � nyx ð76Þ
so that

dW 2

dy
¼ a3 þ nR

and thus W2 = (a3 + nR)y by quadrature. Eq. (72) then
simplifies to:
dW 1

dx

� �2

þ j2x2 � 4a3nx ¼ 2a1 � a23; ð77Þ

where we have used a1 ¼ a01 � a2 þ 3n2R2=2. This equa-
tion is again easily integrated for W1 by quadrature,

W 1 ¼
Z ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2a1 � a23 þ 4a3nx� j2x2
q

dx ð78Þ

yielding

W 1 ¼
1

2j2
ðxj2 � 2na3Þ

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�x2j2 þ 2a1 þ 4nxa3 � a23

q

þ 1

2j3
sin�1 �xj2 þ 2na3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2j2a1 � ð�4n2 þ j2Þa23
p

" #

� ½�2j2a1 þ ð�4n2 þ j2Þa23�. ð79Þ
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